{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "[home](../index.ipynb) | [next: Numpy](numpy.ipynb)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Aperçu de l'écosystème\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Trois ingrédients principaux\n", "\n", "- Numpy : implémentation performante de tableaux uniformes multi-dimensionnels\n", "- Scipy : implémentation de nombreux algorithmes scientifiques\n", "- Matplotlib : visualisation 2D/3D basée sur le tableaux numpy\n", "\n", "Mais aussi\n", "\n", "- Pandas : analyse et manipulation de données \"fast, powerful, flexible and easy to use\"\n", "\n", "Et beaucoup d'autres plus spécifiques...\n", "\n", "## Numpy\n", "\n", "http://docs.scipy.org/doc/numpy/reference/ \n", "http://docs.scipy.org/doc/numpy/user/index.html \n", "http://wiki.scipy.org/Tentative_NumPy_Tutorial \n", "http://wiki.scipy.org/NumPy_for_Matlab_Users\n", "\n", "## Scipy\n", "\n", "http://docs.scipy.org/doc/scipy/reference/ \n", "http://docs.scipy.org/doc/scipy/reference/tutorial/ \n", "http://scipy-lectures.github.io/ (parle aussi de Numpy et Matplotlib)\n", "\n", "## Matplotlib\n", "\n", "http://matplotlib.org/ \n", "http://www.loria.fr/~rougier/teaching/matplotlib/\n", "\n", "## Pandas\n", "\n", "https://pandas.pydata.org/ \n", "https://pandas.pydata.org/docs/getting_started/ \n", "https://pandas.pydata.org/docs/user_guide/\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 4 }